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Abstract--- This paper summarizes some recent work carried out jointly with R. Abeyaratne on the
continuum modeling of phase transitions in thermoelastic tensile bars. The specific model considered
involves a particular Helmholtz free energy potential governing the bulk response of the material
as well as a kinetic relation controlling the phase transition. Inertia is taken into account. The
discussion here is based on an adiabatic model.

1. INTRODUCTION

This paper briefly summarizes some recent work by R. Abeyaratne and the author on
the continuum dynamics of solid—solid phase transitions in one-dimensional tensile bars
composed of a particular thermoelastic material. The subject of continuum modeling of
phase transitions has been studied at some length in recent years; an extensive sample of
some of the resulting literature may be found in the references listed in the papers by
Abeyaratne and Knowles (1993a,b, 1994a,b) and Abeyaratne et al. (1994), as well as in the
review article by Huo and Miiller (1993). Some of the literature cited in these references
pertains only to purely mechanical models, suppressing thermal effects, and still other
papers among those listed consider only quasi-static processes, corresponding to some
problems studied rather widely in the experimental literature.

The discussion to be given here involves an adiabatic theory that omits effects due to
heat condition, but incorporates other thermal effects as well as inertia; the emphasis is
placed on the nature of propagating strain discontinuities. A distinction is made between
shock waves and propagating phase boundaries, though both are moving strain jumps. At
phase boundaries, the kinetics of the underlying phase transition must be invoked, while at
shock waves such information is not needed and in fact cannot be accommodated. Both
types of discontinuities are necessarily subject to the classical entropy inequality.

Detailed arguments supporting the present results are omitted here ; they may be found
in Abeyaratne and Knowles (1994a).

2. FIELD EQUATIONS AND JUMP CONDITIONS

Consider a tensile bar that occupies the interval (— oc, co) of the x-axis in the reference
state. During a motion of the bar, a particle located at x in the reference state is carried at
time ¢ to x+u(x, f), where u is the displacement. The associated strain and particle velocity
are given by y = u,, v = u,, respectively ; subscripts indicate partial derivatives. The nominal
stress, absolute temperature, entropy per unity mass and internal energy per unit mass at
this particle at time ¢ are denoted by o(x.7), 8(x,7) > 0, n(x, ) and &(x, 1), respectively.
While the displacement is required to be continuous, all of the other quantities listed above
are allowed to suffer jumps at moving points of discontinuity. (If heat conduction were
accounted for, § would also be required to be continuous.) Away from such discontinuities,
such derivatives as arise are assumed to exist.
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Where the fields are smooth, the following field equations must hold :

v =7, M
g, = pv, @)
Ty = pE, (€)

and the following inequality must also be satisfied :

n. = 0. 4

In eqns (2) and (3), p is the (constant) referential mass density.
If x = s(¢) is the location at time ¢ of a moving jump in the field quantities, one must
fulfill the following jump conditions:

t—v+(G—7)$=0 (5)
G—0—p@—0)§=0 (6)
{p(E—e)— (112G +0)(G—7)}s =0 (7
(h—ms <O0. ®

Here ©— v, for example, stands for v(s(£) +, 1) — v(s(£) —, 1).

The assumed smoothness of u is responsible for both eqns (1) and (5), the global
balance of momentum yields eqns (2) and (6), global balance of energy—the “first law”—
implies eqns (3) and (7), and the requirement that the rate of entropy production be positive
leads to eqns (4) and (8).

3. A THERMOELASTIC MATERIAL

We now assume the bar is thermoelastic, which means that there is an internal energy
potental &, determined by the material, such that e(x, f) = &(y(x, 1), #{x, #)), and for which
the following constitutive relations hold :

o = p&.(y,1) (%a)

0 = &,(y.7). (9b)

Let y(x, 1) = &(x, 1) —0(x, ) n(x.t) be the Helmholtz free energy. If the specific heat

c = §,/&,, 1s positive as assumed here, the relation (9b) is invertible to give # = #(y, #), and

one may introduce the Helmholtz potential y/(y, 8) = &(y, /(y, 8)) — 04(y, 6). The relations
(9a,b) may then be replaced by the following equivalent ones:

o =pd,(3,0), n=—u(.0). (10)

Abeyaratne and Knowles (1993b) give an explicit ¥(y,6) upon which their quasi-static
study in that paper, as well as the present dynamic investigation, is based. To describe with
minimum detail those features of this particular i that are needed for present purposes, it
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Fig. 1. The strain—temperature plane.

is necessary to refer to the y, 6 plane, which is sketched in Fig. 1. The expression for the
model t,AD is given sectionally on this plane. Each of the subregions P, P, P,, P; shown in the
figure is identified with a phase of the material. The boundaries between P, and P, and
between P, and P, are described, respectively, by

Y= }YM(B) = yc+M(9_0c)7 Y= ym(e):yc+m(e_gn)’ (1 1)

where y. > 0, 6. > 0, M and m are material constants. Above the critical temperature 6.,
the material can exist in only one phase, corresponding to the region P. Below this tempera-
ture, it can exist in the low-strain corresponding to P, in the high-strain phase corresponding
to P; and in an intermediate phase associated with P,. We shall not be concerned with
temperatures above 0., where only a single phase is possible, so we do not give an explicit
formula for ¥ on the region P. On P, and P,, we take

i/fl;yz_ %“y(g_gT)—cB log (6/6r) onPy,

u o ) A
(=107 = L =100 —01) 0 log (6/67)+ 5T (0—0r) onPs.
P p Or

(12)

Here the material constants u, x and ¢ are, respectively, the elastic modulus, the coefficient
of thermal expansion and the specific heat at constant strain, which for simplicity are all
taken to be constant and the same in both the high- and low-strain phases. The constants
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v1, B1 and A, are the transformation strain, the transformation temperature and the latent
heat at the transformation temperature, respectively ; their physical meaning is discussed
in detail by Abeyaratne and Knowles (1993b, 1994a,b). There are restrictions on the
material constants just listed—some equalities, some inequalities—that we shall not repeat
here ; they may be found in the papers cited. One restriction ensures that states in the
intermediate phase are always dynamically unstable in the sense described by Abeyaratne
and Knowles (1993c). We shall not consider here any processes in the bar that include
states in the intermediate phase, so we omit the formula for ¥ on P, corresponding to those
in eqn (12).

The Helmholtz potential described above and given in more detail by Abeyaratne and
Knowles (1993b) is a “two-well potential” in a sense specified there. Multiple-well potentials
are commonly used in describing phase transitions.

We consider only two-phase processes in the bar in which the state (y, 0) at any particle
is always in either the low-strain phase region P, [y < y(8)] or the high-strain phase region
[y > yu(8)]. We refer to the latter inequalities as the phase segregation restrictions ; they
ultimately play a major role. For processes of this kind, the fundamental relations (1)—(8)
can be readily specialized to the material at hand. The thermomechanical coupling par-
ameter x turns out to introduce some troublesome non-linearities in the resulting jump
conditions ; we therefore assume from here on that o = 0. The field equations (1)—(3) for
the two-phase processes to be studied then specialize to

—p, =0 (13a)
ay. —v, =0 (13b)
0, =0, (13¢)

where the fields are smooth; because of eqn (13c), the inequality (4) is automatically
satisfied. In eqn (13b), a = (/p)"? is the acoustic speed common to both phases.

To specialize the jump conditions (5)—(8), one nlust distinguish between two possible
situations: at a shock wave, the states (3,0) and (}, 8) on either side of the discontinuity
belong to the same phase, i.e. to the same region P, or P,. At a phase boundary, these states
belong to different phases. At a shock wave in either phase of the material, eqns (5)—(8)
become

G=Ps+t—-0=0 (14)
a’(—y)+3@E—0v) =0 (15)
(h—0)i =0 (16)
slog (6/6) < 0. (17)

It is readily seen that eqns (14)-(17) are equivalent to the following :

S—_- i S=0,
either < (7—7)s+i—v=0, 7#73, ©#0v, or T=pb=v (18)
6 =0, 0+0

In the first alternative in eqn (18), the discontinuity propagates with the acoustic speed
§ = +a and involves jumps in strain and particle velocity, but not in temperature. In the
second alternative, the discontinuity is stationary in the Lagrangian sense, which cor-
responds to a jump—this time in temperature but not in strain or particle velocity—that
moves with the particles of the body. It is thus like a contact discontinuity in gas dynamics.
Note that in either of the cases in eqn (18), the entropy inequality is trivially satisfied ; this



Dynamic thermoelastic phase transitions 2707

is an artifact of the present material and would not occur for a material characterized by a
more general, non-piecewise-quadratic, two-well potential. In addition, for our material,
the velocity of a shock wave is known a priori; for more general material models, this
would not be the case. For this reason, it might be better to call these discontinuities
acoustic waves, rather than shock waves ; their amplitudes, nevertheless, need not be small.

Turning to the case of a propagating phase boundary, we suppose next that the high-
strain phase is on the left side of the jump, the low-strain phase on the right. For the
present material (with a = 0), the basic jump conditions (5)—(8) specialize under the present
circumstances to

G—$+t-r=0 (19)
@G=7+y)+E—0)s=0 (20)
{e(0—0) +(@7/2)( +7—97) +Ar}s = 0 1)
(log (0/0) + 7+ /(c07) 5 < 0. 22)

In contrast to the case for shock waves in this material, the jump conditions (19)—(22) do
not determine the phase boundary velocity § in terms of material constants. Moreover, by
eliminating the vs between eqns (19) and (20), one can express §° in terms of the strains §;
this expression can be used to show that |§| must be smaller than the acoustic speed a. The
entropy inequality (?;2) determines the direction in which a phase boundary can propagate
if the temperatures 6 on either side are known. In particular, in the special case At = 0 of
vanishing latent heat, eqn (22) implies that the phase boundary cannot move into the hotter
material.

It may be observed that, for the present special choice of thermoelastic material,
thermal and mechanical effects are completely uncoupled in the differential equations (13)
as well as in the jump conditions (18) at shock waves, but this is not the case for the jump
conditions (19)—(22) at a phase boundary. In this sense, the present model appears to be
the simplest one that retains non-trivial effects due to the occurrence of a phase transition.

4. EVOLUTION OF DISCONTINUITIES

Let us suppose that, at time 7 = 0, our doubly-infinite bar is in a given piecewise
homogeneous state with a discontinuity at the origin: thus

v, 0, for x <0,
7(x,0), ¢(x.0),0(x,0) = (23)

yr-Up. O for x>0,

where the six given ys, vs and 0s are constants. We shall only consider data for which the
state (y., Op) on the left is in the high-strain phase, while (yg, fg) is in the low-strain phase ;
some of the issues surrounding this by-no-means innocuous limitation on the initial data
are interesting, especially in the adiabatic theory presently under discussion. We avoid these
issues here ; they are discussed—through not fully resolved—by Abeyaratne and Knowles
(1993a,c.d). We now consider the initial value problem in which vy, v and # are sought
satisfying the initial conditions (23), the differential equations (13) and the jump conditions
(18) or (19)-(22) at shock waves or phase boundaries, respectively. This is called the
Riemann problem it is the natural problem to study if one wishes to investigate the way
in which a given discontinuity evolves in a dynamical system of partial differential equations.
Although some light can be shed on the structure of the most general scale-invariant
solutions of the scale-invariant Riemann problem posed above [see Abeyaratne and
Knowles (1994a)], we leave this aside here and describe only the nature of one class of
solutions constructed in that reference. In this class, the solutions are piecewise constant :
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Y, e, O for x < —at,
oo 8 for —at<x <0,
P 1), 0(x, 1), 8(x, 1) = 3 7.0.0 for 0 < x < §t, (24)
2 f,(; forst < x < at,
YR» U Or for x > at,

where the strains, particle velocities and temperatures bearing primes, pluses and minuses
are all unknown constants, and the phase boundary velocity s—assumed to be subsonic
with respect to the acoustic speed—is also an unknown (positive) constant. Moreover, the
unknown strains and temperatures, once they are determined, must be forced to satisfy the
phase segregation restrictions described earlier : the states (7, 6") and (7, §) must be in the
high-strain phase, possibly separated by a contact discontinuity, while (7, §) must be in the
low-strain phase.

For a candidate of the form (24), the fields are constant where they are smooth, so the
differential equations (13) are trivially satisfied. Thus the issue of whether there is a
solution—and if so, how many—reduces to an analysis of the appropriate jump conditions.
In Abeyaratne and Knowles (1994a), such an analysis is carried out. It is shown there that,
for a suitable class of given data, there is a one-parameter family of solutions of the form
(24) for the Riemann problem, in which each of the nine unknowns in eqn (24) is expressed
as an explicitly determined function of the parameter §, with all phase segregation restric-
tions satisfied. The parameter s itself remains undetermined after all of the jump conditions
and initial conditions have been enforced. Thus for this class of initial data, the Riemann
problem fails to have a unique solution, having instead the one-parameter family of
solutions described above. An analogous lack of uniqueness arises in the purely mechanical
theory of the dynamics of phase transitions, in the thermomechanical theory that accounts
for heat conduction, and in the quasi-static model ; see Abeyaratne and Knowles (1993a,b,
1994b). We have taken the view that, in any one of these settings, this lack of uniqueness
i1s a constitutive deficiency to be remedied by importing from materials science some
information about the physics of the phase transition.

S. THE NOTION OF DRIVING TRACTION

Consider a piece of the bar that occupies the interval [x,, x,] in the reference configur-
ation. During an adiabatic thermomechanical process in the bar, the entropy production
rate I'(¢) for this piece of the bar is given by

d (™
I'r) = HIJ on(x, t)dx. (25)

Vi
Let us temporarily relinquish the assumption that the bar is thermoelastic, operating
instead in the absence of any constitutive law. Suppose that in the piece of the bar under

consideration above, the fields are smooth except at the moving strain discontinuity x = s(¢).
Then I'(¢) in eqn (25) may be decomposed into two parts:

() = Ipu (1) + (1), (26)

where

I (1) = J Epﬂz(x» 1) dx (27a)

¥y

L) = —p(h—n)s; (270)
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Ioui arises from the local dissipation in the material at each particle, and I', represents
the rate of entropy production by the moving discontinuity. Since the second law of
thermodynamics requires that I'(r) > 0 for every piece of the bar, I',,, and I'; must be
separately non-negative ; this leads to eqns (4) and (8).

A useful alternative description of I, involves the notion of driving traction f acting
on the discontinuity at x = s(¢) ; fis defined as

= —1lpmIKo>. (28)

where, for any field g(x. ¢), we have written [[g]] = §—g,<{¢)> = (§+9)/2. Then

fs
= 29
L= 55 (29)
and I'; > 0 requires that
52 0. (30)

By using the definition (28), the energy jump condition (7) and the fact that ¢ = y + 67,
one can derive an alternative representation for f that reveals the relation between driving
traction as defined in the present adiabatic framework and its counterpart in other settings:

I = el = <o [N+ <ond 161 3D

The main significance of eqn (31) is that it remains valid for non-adiabatic thermo-
mechanical processes as well as adiabatic ones ; it has been derived without appeal to any
constitutive law. In a theory that accounts for heat conduction, temperature is continuous,
and eqn (31) reduces to f = [[p¥]]—<o>[[y]], which is the form of the driving traction
used in Abeyaratne and Knowles (1994b). For quasi-static, isothermal processes, one has
[[¢]] = [[6]] = 0, and f as given in eqn (31) specializes to /= [[W]] —o[[x]], where ¢ is the
common value of the stress on either side of the slowly moving discontinuity; this is
precisely the jump in the Gibbs free energy, often called the “driving force” in a phase
transition.

A detailed discussion of the notion of driving traction in a three-dimensional ther-
momechanical setting that accounts for inertia and heat conduction is given by Abeyaratne
and Knowles (1990).

If we now reinstate the assumption that the bar is thermoelastic, we find first from
eqns (3), (9) and (27a) that I',,, = O for any such material, and then that the formula (31)
for f becomes

S = I = 1 = <o 11015 (32)

Suppose the moving discontinuity is a phase boundary in the special thermoelastic material
introduced in Section 3, and assume that the high-strain phase is on the left. Then eqn (32)
can be shown to specialize to

f=—p<0>{clog(6/0) + ix/r ). (33)

On the other hand, at a shock wave that is not a contact discontinuity, one finds that /= 0,
so that a shock wave is dissipation-free in this special material. This would not be true for
a more general two-well potential. Contact discontinuities are dissipation-free because
§=0.
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6. THE KINETIC RELATION

Extra constitutive information is needed to single out a physically acceptable solution
to the Riemann problem and thus provide a determinate theory of the evolution of the
discontinuity studied in Section 4. To ascertain an appropriate additional constitutive
assumption, we start first from the fact that, for a thermoelastic material, I' = (f/<{8))s.
Next, we appeal to the theory of irreversible processes, as described for example by Kestin
(1979), and identify f/<{6) as an affinity and § as its conjugate flux on the basis of the form
of I'. We then postulate a relation of the kind used in irreversible thermodynamics: the
affinity is a materially-determined function of the conjugate flux, so that in the present case

1K) = @(3). (34)
In view of the entropy inequality (30), ¢ must conform to the requirement that
o($)s = 0. (3%5)

If ¢ is continuous as assumed here, eqn (35) requires that ¢(0) = 0.

Let us now return to the one-parameter family of solutions to the Riemann problem
of Section 4, recalling that $ is the frec parameter. In this family of solutions, all physical
quantities, in particular 6 and 6, are determined as functions of §. Upon substituting the
expressions for 6 and € in terms of § into eqn (33), one has a formula for the driving traction
fin terms of $. Substitution of this expression for finto the kinetic relation (34) furnishes
a single equation for the determination of the phase boundary velocity s.

Under certain assumptions on the material parameters and on the nature of the kinetic
response function ¢(s), it is shown by Abeyaratne and Knowles (1994a) that there is a
range of initial data for which this equation has a unique solution $. This value of § then
singles out from the family of solutions to the Riemann problem the one that is preferred
by the specified kinetics.
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